Was Einstein a slow learner as a child?
Einstein was slow in learning how to speak. His parents even consulted a doctor. He also had a cheeky rebelliousness toward authority, which led one headmaster to expel him and another to amuse history by saying that he would never amount to much. But these traits helped make him a genius. His cocky contempt for authority led him to question conventional wisdom. His slow verbal development made him curious about ordinary things — such as space and time — that most adults take for granted. His father gave him a compass at age five, and he puzzled over the nature of a magnetic field for the rest of his life. And he tended to think in pictures rather than words.
Was Einstein learning disabled?
Some researchers claim to detect in Einstein's childhood a mild manifestation of autism or Asperger's syndrome. Simon Baron-Cohen, the director of the autism research center at Cambridge University, is among those. He writes that autism is associated with a "particularly intense drive to systemize and an unusually low drive to empathize." He also notes that this pattern "explains the 'islets of ability' that people with autism display in subjects like math or music or drawing -- all skills that benefit from systemizing."* I do not find such a long-distance diagnosis to be convincing. Even as a teenager, Einstein made close friends, had passionate relationships, enjoyed collegial discussions, communicated well verbally and could empathize with friends and humanity in general.
Albert Einstein on his 75th birthday, March 15, 1954, in Princeton, New Jersey
Did Einstein flunk math?
One widely held belief about Einstein is that he failed math as a student, an assertion that is made, often accompanied by the phrase "as everyone knows," by scores of books and thousands of websites designed to reassure underachieving students. A Google search of Einstein failed math turns up more than 500,000 references. The allegation even made it into the famous "Ripley's Believe it or Not!" newspaper column.
Alas, Einstein's childhood offers history many savory ironies, but this is not one of them. In 1935, a rabbi in Princeton showed him a clipping of the Ripley's column with the headline "Greatest living mathematician failed in mathematics." Einstein laughed. "I never failed in mathematics," he replied, correctly. "Before I was fifteen I had mastered differential and integral calculus." In primary school, he was at the top of his class and "far above the school requirements" in math. By age 12, his sister recalled, "he already had a predilection for solving complicated problems in applied arithmetic," and he decided to see if he could jump ahead by learning geometry and algebra on his own. His parents bought him the textbooks in advance so that he could master them over summer vacation. Not only did he learn the proofs in the books, he also tackled the new theories by trying to prove them on his own. He even came up on his own with a way to prove the Pythagorean theory.
id Einstein think in pictures rather than words?
Yes, his great breakthroughs came from visual experiments performed in his head rather than the lab. They were calledGedankenexperiment -- thought experiments. At age 16, he tried to picture in his mind what it would be like to ride alongside a light beam. If you reached the speed of light, wouldn't the light waves seem stationery to you? But Maxwell's famous equations describing electromagnetic waves didn't allow that. He knew that math was the language nature uses to describe her wonders, so he could visualize how equations were reflected in realities. So for the next ten years he wrestled with this thought experiment until he came up with the special theory of relativity.
What thought picture did Einstein use for special relativity?
Among other things, he pictured lightning striking at both ends of a moving train. A person on the embankment might see the strikes as simultaneous, but to someone on the speeding train they would appear to have happened at different moments. Because the train is speeding forward, the light from the strike at the front of the train would reach him a moment before the light from the strike at the back of the train. From that he realized that simultaneity is relative to your state of motion, and from that he came up with the idea that there is no such thing as absolute time. Time is relative. Hence the special theory of relativity.